Zastosowanie sztucznej inteligencji w medycynie: przegląd stanu wiedzy i perspektywy rozwoju

Autor

DOI:

https://doi.org/10.56652/ejmss2024.1-2.2

Słowa kluczowe:

sztuczna inteligencja, modele fundacyjne, walidacja kliniczna, medycyna spersonalizowana

Abstrakt

Niniejszy przegląd narracyjny syntetyzuje recenzowane dowody dotyczące sztucznej inteligencji w medycynie. Przedstawiamy postępy techniczne – zwłaszcza duże modele multimodalne – oraz zweryfikowane zastosowania w detekcji stanów nagłych, monitorowaniu ambulatoryjnym i przyłóżkowym, augmentacji chirurgii i obrazowania oraz w odkrywaniu leków. W ujęciu cyklu życia akcentujemy ład danych, walidację zewnętrzną, integrację z workflow i monitoring po wdrożeniu. Analiza wskazuje na wcześniejsze rozpoznanie, wzrost efektywności i wsparcie personalizacji, przy zróżnicowanej jakości badań i utrzymujących się wyzwaniach równości, uprzedzeń i prywatności.

Bibliografia

Adams, R., Henry, K. E., Sridharan, A., Soleimani, H., Johnson, L., Hager, D. N., Cosgrove, S. E., Markowski, A., Klein, E. Y., & Saria, S. (2022). Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning–based early warning system for sepsis. Nature Medicine, 28(7), 1455–1460. https://doi.org/10.1038/s41591-022-01894-0

Aggarwal, A., Darzi, A., & Raza, A. (2023). Artificial intelligence–based chatbots for promoting health behaviour change: Systematic review. Journal of Medical Internet Research, 25, e40789. https://doi.org/10.2196/40789

AI o AI. (2023, December 14). SantaGPT – Twój osobisty przewodnik prezentowy na Święta Bożego Narodzenia. https://aioai.pl/santagpt-twoj-osobisty-przewodnik-prezentowy-na-swieta-bozego-narodzenia/

Aung, Y. Y. M., Wong, D. C. S., & Ting, D. S. W. (2021). The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. British Medical Bulletin, 139(1), 4–15. https://doi.org/10.1093/bmb/ldab016

Azram, M., Chua, K.-C., Barker, R., Chua, S., Vaithianathan, R., & Nadarajah, R. (2021). Clinical validation and evaluation of a novel six-lead handheld electrocardiogram recorder compared to the 12-lead electrocardiogram in unselected cardiology patients. European Heart Journal – Digital Health, 2(4), 643–651. https://doi.org/10.1093/ehjdh/ztab079

Bender, A., & Cortés-Ciriano, I. (2021). Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discovery Today, 26(3), 511–524. https://doi.org/10.1016/j.drudis.2020.12.009

Bergeman, A. T., Pultoo, S. N. J., Winter, M. M., Somsen, G. A., Tulevski, I. I., Wilde, A. A. M., Postema, P. G., & van der Werf, C. (2023). Accuracy of mobile six-lead electrocardiogram device for assessment of QT interval: A prospective validation study. Netherlands Heart Journal, 31(9), 340–347. https://doi.org/10.1007/s12471-022-01716-5

Brugnara, G., Herweh, C., Heringer, S., … & Pfaff, J. A. (2023). Deep-learning-based detection of vessel occlusions on CT angiography in suspected acute ischaemic stroke. Nature Communications, 14, 4938. https://doi.org/10.1038/s41467-023-40564-8

Corral-Acero, J., Margara, F., Marciniak, M., et al. (2020). The ‘Digital Twin’ to enable the vision of precision cardiology. European Heart Journal, 41(48), 4556–4564. https://doi.org/10.1093/eurheartj/ehaa1597

Dasari, H., Gonzalez, A., Ducharme, F. M., et al. (2024). Feasibility, acceptability, and safety of a novel device for self-collecting capillary blood samples in clinical trials. PLOS ONE, 19(7), e0304155. https://doi.org/10.1371/journal.pone.0304155

do Nascimento, I. J. B., Pizarro, A. B., Xu, Y., et al. (2023). The global effect of digital health technologies on health-related outcomes: An umbrella review of systematic reviews. The Lancet Digital Health, 5(9), e575–e589. https://doi.org/10.1016/S2589-7500(23)00092-4

Gumkowska, A., & Kondracki, S. (2022). Artificial intelligence: Raport SCMP 2022. Stowarzyszenie Content Marketing Polska. https://www.iab.org.pl/wp-content/uploads/2023/03/SCMP_Artifficial-Intelligence_raport_2022.pdf

Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925

Hammoud, M. M., Patel, B. J., & Reddy, N. (2024). Evaluating the diagnostic performance of symptom checkers. JMIR AI, 3(1), e46875. https://doi.org/10.2196/46875

Harari, R. E., Rienzo, A. M., Ward, S. T., … & Orihuela-Espina, F. (2024). Deep learning analysis of surgical video recordings to assess operating room teams’ non-technical skills. JAMA Network Open, 7(5), e2412872. https://doi.org/10.1001/jamanetworkopen.2024.12872

Henry, K. E., Adams, R., Parent, C., Soleimani, H., Sridharan, A., Johnson, L., Hager, D. N., Cosgrove, S. E., Markowski, A., Klein, E. Y., & Saria, S. (2022). Factors driving provider adoption of the TREWS machine-learning-based early-warning system and its effects on sepsis treatment timing. Nature Medicine, 28(7), 1447–1454. https://doi.org/10.1038/s41591-022-01895-z

Islam, S. M. S., Gale, R., Naeem, M. A., et al. (2022). Wearable cuffless blood pressure monitoring devices: A systematic review and meta-analysis. European Heart Journal – Digital Health, 3(2), 323–333. https://doi.org/10.1093/ehjdh/ztac017

Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2021). Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opinion on Drug Discovery, 16(9), 949–959. https://doi.org/10.1080/17460441.2021.1909567

Johnson, K. B., Wei, W.-Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., Zhao, J., & Snowdon, J. L. (2020). Precision medicine, AI, and the future of personalised healthcare. Clinical and Translational Science, 13(3), 431–442. https://doi.org/10.1111/cts.12884

Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2

Kakeji, Y., Marescaux, J., & Hashizume, M. (2022). Social implementation of a remote surgery system in Japan. NPJ Digital Medicine, 5, 39. https://doi.org/10.1038/s41746-022-00578-7

Kim, J. G., Yoo, A. J., Ilyas, A., … & Sheth, S. A. (2024). Automated detection of large-vessel occlusion using deep learning: Diagnostic accuracy and physician assistance. Journal of NeuroInterventional Surgery. Advance online publication. https://doi.org/10.1136/neurintsurg-2024-022254

Kuan, P. X., Ho, Y.-J., Shih, M.-C., & Chen, C.-Y. (2022). Telemedicine and remote monitoring for cardiovascular outcomes: A systematic review and meta-analysis. The Lancet Digital Health, 4(9), e676–e686. https://doi.org/10.1016/S2589-7500(22)00124-8

Laymouna, M., Sindhwani, S., El-Gayar, O., & Chowdhury, D. (2024). Roles, users, benefits, and limitations of chatbots in health care: Systematic review. Journal of Medical Internet Research, 26, e56930. https://doi.org/10.2196/56930

Leipheimer, J. M., Balter, M. L., Chen, A. I., et al. (2020). First-in-human evaluation of a hand-held automated venipuncture device for rapid venous blood draws. Technology, 8(2–3), 131–142. https://doi.org/10.1142/S2339547819500067

Liu, X., Cruz Rivera, S., Moher, D., Calvert, M., Denniston, A. K., & the SPIRIT-AI and CONSORT-AI Working Group. (2020). Reporting guidelines for clinical trials evaluating AI interventions: The CONSORT-AI extension. BMJ, 370, m3164. https://doi.org/10.1136/bmj.m3164

MamStartup. (2023, September 24). Polska platforma Jobbli wykorzystuje AI do opracowywania rekomendacji ścieżek kariery i pomaga w szukaniu pracy. https://mamstartup.pl/polska-platforma-jobbli-wykorzystuje-ai-do-opracowywania-rekomendacji-sciezek-kariery-i-pomaga-w-szukaniu-pracy/

Mascagni, P., Alapatt, D., Sestini, L., Altieri, M. S., Madani, A., Watanabe, Y., … Hashimoto, D. A. (2022). Computer vision in surgery: From potential to clinical value. NPJ Digital Medicine, 5, 163. https://doi.org/10.1038/s41746-022-00707-5

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine, 27(4), 12–14. (Original work published 1955). https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1904

Miao, B. Y., Tran, V. T., & Ravaud, P. (2024). Characterisation of digital therapeutic clinical trials: Systematic review. NPJ Digital Medicine, 7, 64. https://doi.org/10.1038/s41746-024-01062-8

Moor, M., Banerjee, O., Abad, Z. S. H., et al. (2023). Foundation models for generalist medical artificial intelligence. Nature, 616(7956), 259–265. https://doi.org/10.1038/s41586-023-05881-4

Naik, N., Hameed, B. M. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., Aggarwal, K., Ibrahim, S., Patil, V., Smriti, K., Dutt, A., Pandey, A., Ponnusamy, V., & Rai, B. P. (2022). Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Frontiers in Surgery, 9, 862322. https://doi.org/10.3389/fsurg.2022.862322

Nagaraj, D., Lee, A., Misra, S., et al. (2023). Augmenting digital twins with federated learning in medicine. NPJ Digital Medicine, 6, 81. https://doi.org/10.1038/s41746-023-00821-y

Onorati, F., Regalia, G., Caborni, C., LaFrance, W. C., Blum, A. S., Bidwell, J., Poh, M.-Z., & Picard, R. W. (2021). Prospective study of a multimodal convulsive-seizure detection wearable system in paediatric and adult patients. Frontiers in Neurology, 12, 724904. https://doi.org/10.3389/fneur.2021.724904

Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. Nature Medicine, 28(1), 31–38. https://doi.org/10.1038/s41591-021-01614-0

Riboli-Sasco, E., McDermott, F. D., Darzi, A., & Shah, N. H. (2023). Triage and diagnostic accuracy of online symptom checkers: Systematic review. Journal of Medical Internet Research, 25, e43803. https://doi.org/10.2196/43803

Sampson, C., O’Neill, J., Ghosh, R., et al. (2022). Digital cognitive behavioural therapy for insomnia and primary care costs in England: An interrupted time series analysis. BJGP Open, 6(4), bjgpo.2022.0090. https://doi.org/10.3399/BJGPO.2022.0090

Sharma, S., Bashir, M., & Lu, D. (2023). Addressing the challenges of AI-based telemedicine: Opportunities, pitfalls and the road ahead. NPJ Digital Medicine, 6, 198. https://doi.org/10.1038/s41746-023-00952-8

Soun, J. E., Zolyan, A., McLouth, J., … & Wintermark, M. (2023). Impact of an automated large-vessel occlusion detection tool on workflow and outcomes: Real-world multicentre experience. Radiology, 307(2), e222247. https://doi.org/10.1148/radiol.2222247

Szollosi, D., & Iftikhar, S. (2024). Robotic surgery, machine learning and artificial intelligence: Contemporary applications and future perspectives. Minimally Invasive Therapy & Allied Technologies, 33(1), 124–136. https://doi.org/10.1080/13645706.2023.2277288

Thirunavukarasu, A. J., Almajalid, R., Ho, A. T., et al. (2023). Large language models in medicine. Nature Medicine, 29(8), 1930–1940. https://doi.org/10.1038/s41591-023-02448-8

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460. https://doi.org/10.1093/mind/LIX.236.433

Varadi, M., Anyango, S., Deshpande, M., et al. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061

van Vliet, M., Kamphuis, J., Lely, R., et al. (2024). Evaluation of a novel cuffless photoplethysmography-based blood pressure algorithm in a wrist-worn device. NPJ Digital Medicine, 7, 126. https://doi.org/10.1038/s41746-024-01095-z

Vamathevan, J., Clark, D., Czodrowski, P., et al. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5

Wallace, W., Chan, C., Chidambaram, S., & Car, J. (2022). Diagnostic and triage accuracy of digital and online symptom checkers: Systematic review. NPJ Digital Medicine, 5, 70. https://doi.org/10.1038/s41746-022-00667-w

Wang, C., Li, Z., Yang, Y., et al. (2023). Digital therapeutics from bench to bedside. NPJ Digital Medicine, 6, 177. https://doi.org/10.1038/s41746-023-00777-z

Wise, J. (2022). Insomnia: NICE recommends digital app as treatment option. BMJ, 377, o1268. https://doi.org/10.1136/bmj.o1268

Wouters, O. J., McKee, M., & Luyten, J. (2020). Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA, 323(9), 844–853. https://doi.org/10.1001/jama.2020.1166

Zhang, J., Wang, Y., & Li, H. (2024). Evolution of artificial intelligence in healthcare: A 30-year bibliometric analysis. Frontiers in Medicine, 11, 1505692. https://doi.org/10.3389/fmed.2024.1505692

Opublikowane

02-12-2024

Jak cytować

Porzybót, D., & Golysheva, I. (2024). Zastosowanie sztucznej inteligencji w medycynie: przegląd stanu wiedzy i perspektywy rozwoju. European Journal of Management and Social Science, 5(1-2), 14–18. https://doi.org/10.56652/ejmss2024.1-2.2