Applications of artificial intelligence in medicine: a state-of-the-art review and future perspectives

Authors

DOI:

https://doi.org/10.56652/ejmss2024.1-2.2

Keywords:

artificial intelligence, foundation models, clinical validation, personalised medicine

Abstract

This narrative review synthesises peer-reviewed evidence on artificial intelligence (AI) in medicine. We outline technical advances – most notably, large multimodal (“foundation”) models – and map validated applications across time-critical detection, ambulatory and bedside monitoring, surgical and imaging augmentation, and drug discovery. Using a lifecycle lens, we highlight dependencies on data governance, external validation, workflow integration and post-deployment monitoring. The analysis shows meaningful gains in earlier detection, efficiency and support for personalised care, alongside heterogeneity in study quality and persistent concerns about bias, equity and privacy.

References

Adams, R., Henry, K. E., Sridharan, A., Soleimani, H., Johnson, L., Hager, D. N., Cosgrove, S. E., Markowski, A., Klein, E. Y., & Saria, S. (2022). Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning–based early warning system for sepsis. Nature Medicine, 28(7), 1455–1460. https://doi.org/10.1038/s41591-022-01894-0

Aggarwal, A., Darzi, A., & Raza, A. (2023). Artificial intelligence–based chatbots for promoting health behaviour change: Systematic review. Journal of Medical Internet Research, 25, e40789. https://doi.org/10.2196/40789

AI o AI. (2023, December 14). SantaGPT – Twój osobisty przewodnik prezentowy na Święta Bożego Narodzenia. https://aioai.pl/santagpt-twoj-osobisty-przewodnik-prezentowy-na-swieta-bozego-narodzenia/

Aung, Y. Y. M., Wong, D. C. S., & Ting, D. S. W. (2021). The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. British Medical Bulletin, 139(1), 4–15. https://doi.org/10.1093/bmb/ldab016

Azram, M., Chua, K.-C., Barker, R., Chua, S., Vaithianathan, R., & Nadarajah, R. (2021). Clinical validation and evaluation of a novel six-lead handheld electrocardiogram recorder compared to the 12-lead electrocardiogram in unselected cardiology patients. European Heart Journal – Digital Health, 2(4), 643–651. https://doi.org/10.1093/ehjdh/ztab079

Bender, A., & Cortés-Ciriano, I. (2021). Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discovery Today, 26(3), 511–524. https://doi.org/10.1016/j.drudis.2020.12.009

Bergeman, A. T., Pultoo, S. N. J., Winter, M. M., Somsen, G. A., Tulevski, I. I., Wilde, A. A. M., Postema, P. G., & van der Werf, C. (2023). Accuracy of mobile six-lead electrocardiogram device for assessment of QT interval: A prospective validation study. Netherlands Heart Journal, 31(9), 340–347. https://doi.org/10.1007/s12471-022-01716-5

Brugnara, G., Herweh, C., Heringer, S., … & Pfaff, J. A. (2023). Deep-learning-based detection of vessel occlusions on CT angiography in suspected acute ischaemic stroke. Nature Communications, 14, 4938. https://doi.org/10.1038/s41467-023-40564-8

Corral-Acero, J., Margara, F., Marciniak, M., et al. (2020). The ‘Digital Twin’ to enable the vision of precision cardiology. European Heart Journal, 41(48), 4556–4564. https://doi.org/10.1093/eurheartj/ehaa1597

Dasari, H., Gonzalez, A., Ducharme, F. M., et al. (2024). Feasibility, acceptability, and safety of a novel device for self-collecting capillary blood samples in clinical trials. PLOS ONE, 19(7), e0304155. https://doi.org/10.1371/journal.pone.0304155

do Nascimento, I. J. B., Pizarro, A. B., Xu, Y., et al. (2023). The global effect of digital health technologies on health-related outcomes: An umbrella review of systematic reviews. The Lancet Digital Health, 5(9), e575–e589. https://doi.org/10.1016/S2589-7500(23)00092-4

Gumkowska, A., & Kondracki, S. (2022). Artificial intelligence: Raport SCMP 2022. Stowarzyszenie Content Marketing Polska. https://www.iab.org.pl/wp-content/uploads/2023/03/SCMP_Artifficial-Intelligence_raport_2022.pdf

Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925

Hammoud, M. M., Patel, B. J., & Reddy, N. (2024). Evaluating the diagnostic performance of symptom checkers. JMIR AI, 3(1), e46875. https://doi.org/10.2196/46875

Harari, R. E., Rienzo, A. M., Ward, S. T., … & Orihuela-Espina, F. (2024). Deep learning analysis of surgical video recordings to assess operating room teams’ non-technical skills. JAMA Network Open, 7(5), e2412872. https://doi.org/10.1001/jamanetworkopen.2024.12872

Henry, K. E., Adams, R., Parent, C., Soleimani, H., Sridharan, A., Johnson, L., Hager, D. N., Cosgrove, S. E., Markowski, A., Klein, E. Y., & Saria, S. (2022). Factors driving provider adoption of the TREWS machine-learning-based early-warning system and its effects on sepsis treatment timing. Nature Medicine, 28(7), 1447–1454. https://doi.org/10.1038/s41591-022-01895-z

Islam, S. M. S., Gale, R., Naeem, M. A., et al. (2022). Wearable cuffless blood pressure monitoring devices: A systematic review and meta-analysis. European Heart Journal – Digital Health, 3(2), 323–333. https://doi.org/10.1093/ehjdh/ztac017

Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2021). Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opinion on Drug Discovery, 16(9), 949–959. https://doi.org/10.1080/17460441.2021.1909567

Johnson, K. B., Wei, W.-Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., Zhao, J., & Snowdon, J. L. (2020). Precision medicine, AI, and the future of personalised healthcare. Clinical and Translational Science, 13(3), 431–442. https://doi.org/10.1111/cts.12884

Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2

Kakeji, Y., Marescaux, J., & Hashizume, M. (2022). Social implementation of a remote surgery system in Japan. NPJ Digital Medicine, 5, 39. https://doi.org/10.1038/s41746-022-00578-7

Kim, J. G., Yoo, A. J., Ilyas, A., … & Sheth, S. A. (2024). Automated detection of large-vessel occlusion using deep learning: Diagnostic accuracy and physician assistance. Journal of NeuroInterventional Surgery. Advance online publication. https://doi.org/10.1136/neurintsurg-2024-022254

Kuan, P. X., Ho, Y.-J., Shih, M.-C., & Chen, C.-Y. (2022). Telemedicine and remote monitoring for cardiovascular outcomes: A systematic review and meta-analysis. The Lancet Digital Health, 4(9), e676–e686. https://doi.org/10.1016/S2589-7500(22)00124-8

Laymouna, M., Sindhwani, S., El-Gayar, O., & Chowdhury, D. (2024). Roles, users, benefits, and limitations of chatbots in health care: Systematic review. Journal of Medical Internet Research, 26, e56930. https://doi.org/10.2196/56930

Leipheimer, J. M., Balter, M. L., Chen, A. I., et al. (2020). First-in-human evaluation of a hand-held automated venipuncture device for rapid venous blood draws. Technology, 8(2–3), 131–142. https://doi.org/10.1142/S2339547819500067

Liu, X., Cruz Rivera, S., Moher, D., Calvert, M., Denniston, A. K., & the SPIRIT-AI and CONSORT-AI Working Group. (2020). Reporting guidelines for clinical trials evaluating AI interventions: The CONSORT-AI extension. BMJ, 370, m3164. https://doi.org/10.1136/bmj.m3164

MamStartup. (2023, September 24). Polska platforma Jobbli wykorzystuje AI do opracowywania rekomendacji ścieżek kariery i pomaga w szukaniu pracy. https://mamstartup.pl/polska-platforma-jobbli-wykorzystuje-ai-do-opracowywania-rekomendacji-sciezek-kariery-i-pomaga-w-szukaniu-pracy/

Mascagni, P., Alapatt, D., Sestini, L., Altieri, M. S., Madani, A., Watanabe, Y., … Hashimoto, D. A. (2022). Computer vision in surgery: From potential to clinical value. NPJ Digital Medicine, 5, 163. https://doi.org/10.1038/s41746-022-00707-5

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine, 27(4), 12–14. (Original work published 1955). https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1904

Miao, B. Y., Tran, V. T., & Ravaud, P. (2024). Characterisation of digital therapeutic clinical trials: Systematic review. NPJ Digital Medicine, 7, 64. https://doi.org/10.1038/s41746-024-01062-8

Moor, M., Banerjee, O., Abad, Z. S. H., et al. (2023). Foundation models for generalist medical artificial intelligence. Nature, 616(7956), 259–265. https://doi.org/10.1038/s41586-023-05881-4

Naik, N., Hameed, B. M. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., Aggarwal, K., Ibrahim, S., Patil, V., Smriti, K., Dutt, A., Pandey, A., Ponnusamy, V., & Rai, B. P. (2022). Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Frontiers in Surgery, 9, 862322. https://doi.org/10.3389/fsurg.2022.862322

Nagaraj, D., Lee, A., Misra, S., et al. (2023). Augmenting digital twins with federated learning in medicine. NPJ Digital Medicine, 6, 81. https://doi.org/10.1038/s41746-023-00821-y

Onorati, F., Regalia, G., Caborni, C., LaFrance, W. C., Blum, A. S., Bidwell, J., Poh, M.-Z., & Picard, R. W. (2021). Prospective study of a multimodal convulsive-seizure detection wearable system in paediatric and adult patients. Frontiers in Neurology, 12, 724904. https://doi.org/10.3389/fneur.2021.724904

Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. Nature Medicine, 28(1), 31–38. https://doi.org/10.1038/s41591-021-01614-0

Riboli-Sasco, E., McDermott, F. D., Darzi, A., & Shah, N. H. (2023). Triage and diagnostic accuracy of online symptom checkers: Systematic review. Journal of Medical Internet Research, 25, e43803. https://doi.org/10.2196/43803

Sampson, C., O’Neill, J., Ghosh, R., et al. (2022). Digital cognitive behavioural therapy for insomnia and primary care costs in England: An interrupted time series analysis. BJGP Open, 6(4), bjgpo.2022.0090. https://doi.org/10.3399/BJGPO.2022.0090

Sharma, S., Bashir, M., & Lu, D. (2023). Addressing the challenges of AI-based telemedicine: Opportunities, pitfalls and the road ahead. NPJ Digital Medicine, 6, 198. https://doi.org/10.1038/s41746-023-00952-8

Soun, J. E., Zolyan, A., McLouth, J., … & Wintermark, M. (2023). Impact of an automated large-vessel occlusion detection tool on workflow and outcomes: Real-world multicentre experience. Radiology, 307(2), e222247. https://doi.org/10.1148/radiol.2222247

Szollosi, D., & Iftikhar, S. (2024). Robotic surgery, machine learning and artificial intelligence: Contemporary applications and future perspectives. Minimally Invasive Therapy & Allied Technologies, 33(1), 124–136. https://doi.org/10.1080/13645706.2023.2277288

Thirunavukarasu, A. J., Almajalid, R., Ho, A. T., et al. (2023). Large language models in medicine. Nature Medicine, 29(8), 1930–1940. https://doi.org/10.1038/s41591-023-02448-8

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460. https://doi.org/10.1093/mind/LIX.236.433

Varadi, M., Anyango, S., Deshpande, M., et al. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061

van Vliet, M., Kamphuis, J., Lely, R., et al. (2024). Evaluation of a novel cuffless photoplethysmography-based blood pressure algorithm in a wrist-worn device. NPJ Digital Medicine, 7, 126. https://doi.org/10.1038/s41746-024-01095-z

Vamathevan, J., Clark, D., Czodrowski, P., et al. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5

Wallace, W., Chan, C., Chidambaram, S., & Car, J. (2022). Diagnostic and triage accuracy of digital and online symptom checkers: Systematic review. NPJ Digital Medicine, 5, 70. https://doi.org/10.1038/s41746-022-00667-w

Wang, C., Li, Z., Yang, Y., et al. (2023). Digital therapeutics from bench to bedside. NPJ Digital Medicine, 6, 177. https://doi.org/10.1038/s41746-023-00777-z

Wise, J. (2022). Insomnia: NICE recommends digital app as treatment option. BMJ, 377, o1268. https://doi.org/10.1136/bmj.o1268

Wouters, O. J., McKee, M., & Luyten, J. (2020). Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA, 323(9), 844–853. https://doi.org/10.1001/jama.2020.1166

Zhang, J., Wang, Y., & Li, H. (2024). Evolution of artificial intelligence in healthcare: A 30-year bibliometric analysis. Frontiers in Medicine, 11, 1505692. https://doi.org/10.3389/fmed.2024.1505692

Downloads

Published

2024-12-02

How to Cite

Porzybót, D., & Golysheva, I. (2024). Applications of artificial intelligence in medicine: a state-of-the-art review and future perspectives. European Journal of Management and Social Science, 5(1-2), 14–18. https://doi.org/10.56652/ejmss2024.1-2.2